• Home
  • About
  • Cutting Tools
    • Carbro
    • CFT - George Whalley
    • Dummel
    • Everede Tool
    • Fullerton Tool
    • Inovatool
    • Lexington Cutter
    • Nine 9
    • Regal
    • Rockhard
    • Rocky Mountain Twist
  • Equipment
    • Alpha Tools
    • Boneham
    • FRB America
    • Haimer
    • Hangsterfer's
    • Llambrich
    • MRO Solutions
    • Precision Brand
    • SCM Tapholders
    • Tuffy Products
  • News
  • Contact
Browne & Co
  • Home
  • About
  • Cutting Tools
    • Carbro
    • CFT - George Whalley
    • Dummel
    • Everede Tool
    • Fullerton Tool
    • Inovatool
    • Lexington Cutter
    • Nine 9
    • Regal
    • Rockhard
    • Rocky Mountain Twist
  • Equipment
    • Alpha Tools
    • Boneham
    • FRB America
    • Haimer
    • Hangsterfer's
    • Llambrich
    • MRO Solutions
    • Precision Brand
    • SCM Tapholders
    • Tuffy Products
  • News
  • Contact

Chip Formation: You're Not Cutting Chips, You're Separating Metal from Itself

8/14/2023

0 Comments

 
by Bernard Martin
Contrary to popular terminology, metal is not “cut” as much as it is a “forced separation from itself.” To understand this, think of how molecules bond together.  Molecules resemble our solar system with the nucleus represented by our Sun (or a carbon atom in the image) and the electrons represent by the various planets. 

When one molecule “bonds” with another it is as if two solar systems’ planets became intertwined into each others orbits with both solar systems sharing certain planets and making the whole larger than the sum if it’s parts. 
​

When we use a cutting tool we are inducing these bonds to break apart. ​​

The “machinability” of a particular metal partially defines how easily the material separates from itself.  ​

Picture
The basic mechanics of forming a chip are the same regardless of the base material. As the cutting tool engages the workpiece, the material directly ahead of the tool is sheared and deformed under tremendous pressure. The deformed material then seeks to relieve its stressed condition by fracturing and flowing into the space above the tool in the form of a chip. 

The important difference is how the chip typically forms in various materials.
 
Regardless of the tool being used or the metal being cut, the chip forming process occurs by a mechanism called plastic deformation. This deformation can be visualized as shearing. That is when a metal is subjected to a load exceeding its elastic limit.

​The crystals of the metal elongate through an action of slipping or shearing, which takes place within the crystals and between adjacent crystals.

Type 1: Discontinuous Chip

Cast Iron, Hard Brass and other materials that produce a Powdery chip.
 
“Discontinuous Chip - Discontinuous or segmented chips are produced when brittle metal such as cast iron and hard bronze are cut or when some ductile metals are cut under poor cutting conditions.
discontinuous-chip
As the point of the cutting tool contacts the metal, some compression occurs, and the chip begins flowing along the chip-tool interface. As more stress is applied to brittle metal by the cutting action, the metal compresses until it reaches a point where rupture occurs and the chip separates from the unmachined portion. 

This cycle is repeated indefinitely during the cutting operation, with the rupture of each segment occurring on the shear angle or plane. Generally, as a result of these successive ruptures, a poor surface is produced on the workpiece.”  

Notice how the chips deform and begin to break up at a considerable distance in front of the cutting edge. Chip control is usually not a problem when machining these materials. Harder, more heat and wear resistant Carbide Grades can be used in these applications. Edge strength becomes less of a factor vs. machining Steel or Stainless or other materials that make long chips.  

Type 1 Discontinuous Chipping materials are where most of our competitors have focused their attention.

Type 2: Continuous Chip

Medium to High carbon and alloy Steels – Long Chipping Materials
 
“Continuous Chip - Continuous chips are a continuous ribbon produced when the flow of metal next to the tool face is not greatly restricted by a built-up edge or friction at the chip tool interface. The continuous ribbon chip is considered ideal for efficient cutting action because it results in better finishes. Unlike the Type 1 chip, fractures or ruptures do not occur here, because of the ductile nature of the metal.”
discontinuous-chip
Carbon and Alloy Steels such as 1030, 1035, 1045, 1144, 4130, 4140, 4340 contain at least .3% carbon that allows them to be hardened by heating and quenching. They produce long continuous chips.
 
When machining these metals with Carbide Inserts the material in front of the cutting edge deforms resulting in high temperatures which softens the metal and consequently lowers it's strength and hardness making it easier to machine.

The chips weaken and begin to break in front the cutting edge; the tool acts much in the same way that a wedge does when splitting wood. In some cases, air, oil or coolant quenches the hot chips, hardening them and making them brittle and easier to break.

The chips produced when cutting these metals contact the face of the tool behind the cutting edge creating a zone of high heat that can result in cratering. Coatings usually eliminate this problem. 

Type 2: Continuous chip materials are the other area where many of our competitors have focused their attention.

Type 3: Sheared Chips

Low carbon Steels, Stainless Steels, Nickel Alloys, Titanium, Copper, Aluminum and other soft, “gummy’ Materials.
 
Sheared Chips or as some refer to it “Continuous Chip with a Built-up Edge (BUE). The metal ahead of the cutting tool is compressed and forms a chip which begins to flow along the chip-tool interface.
sheared Chip
As a result of the high temperature, the high pressure, and the high frictional resistance against the flow of the chip along the chip-tool interface, small particles of metal begin adhering to the edge of the cutting tool while the chip shears away.

As the cutting process continues, more particles adhere to the cutting tool and a larger build-up results, which affects the cutting action. The built-up edge increases in size and becomes more unstable. Eventually a point is reached where fragments are torn off. Portions of these fragments break off and stick to both the chip and the workpiece.

The build-up and breakdown of the built-up edge occur rapidly during a cutting action and cover the machined surface with a multitude of built-up fragments. These fragments adhere to and score the machined surface, resulting in a poor surface finish.
These metals readily deform in front of the cutting edge and have to be "sheared" by the tool. What the above paragraph doesn’t tell you is that these materials require tools with sharper cutting edges than those used for machining cast Iron or higher carbon content Steels. The chips tend to compress onto the face of the tool which can result in built-up edge. 

The chips formed when cutting these metals are thicker than those produced by Medium Carbon or Alloy Steels at the same Feed Rates and Depths of Cut. These thicker chips are stronger and harder to break. Destiny Tool, through a combination of rake face geometry, carbide substrate and concentricity tolerance is able to enable the chip to more readily "separate from itself" which not only improves MRR, but also reduced heat into the end mill and thereby extends tool life as the feed rate increases.

​High strength metals such as Stainless Steel, Nickel Alloys and Titanium generate high heat and high cutting pressures in the area of the cutting edge. This results in reduced tool life compared to easier to machine materials. 
  • This article was originally written in 2001
  • Portions of this have been edited from http://www.manufacturingcenter.com/tooling/archives/0101/0101bk.asp
  • Plastic Deformation image by Jutka Czirok, Design Technology and ICT Teacher
  • Special thanks to Charles Colerich, who created these drawings for me in 1994.
0 Comments

Choosing the Right Insert Dapra Grade & Geometry for Your Application

7/12/2023

0 Comments

 
Choosing the right insert geometry and grade for an application can easily make or break a job. Making the right choice requires educating yourself on what types of cutting edge and carbide grades are best suited to the machining conditions present.
​
Typical considerations include:
  • Material being machined
  • Workholding rigidity
  • Machine tool rigidity (40 or 50 taper, box or linear ways
  • Tool holder used
  • Tool length / diameter ratio
  • Coolant vs. dry machining
  • Machining parameters (DOC, WOC, speed & feed)
​Other factors can come into play, but those listed above are almost always the important issues when determining what geometry and grade to select. Following are some brief suggestions for geometry and grade selection, according to the variables above.

Keep in mind that these are typical scenarios and this selection process will in most cases result in the correct choice. However, combinations of the above factors can create unique situations that call for unusual grade/geometry selections. The best course of action is to 
contact your Dapra Applications Specialist for technical support. We are here to help!
Picture

Grade Selection

Dapra uses an easy-to-understand system that separates grades by toughness/hardness. The same coatings are available for each carbide substrate, so choosing the grade begins with the toughness of the substrate desired and ends with the coating of choice.

For abusive applications, use of the toughest grade is recommended. These would be identified as the following: interrupted cuts; long tool lengths; poor chip evacuation; stainless steels; high-temperature alloys; poor workpiece or machine rigidity; coolant use or very heavy cut depths.
​
These abusive applications require a cutting tool with high shock resistance and toughness to reduce the chance of insert chipping. Use of these grades will provide excellent toughness at the cost of some wear resistance properties.

Dapra's toughest (most shock-resistant) Square Shoulder insert grades are:
  • DMP35 (uncoated substrate – toughest grade)
  • DMP35-GLH (medium to high temperatures in steels and irons)
  • DMP35-HM (high temperatures in tough stainless steels, high-temp. alloys, titanium)
  • DMK35 (uncoated substrate – tough grade – XPET only)
  • DMK35-HM (high temperatures in tough stainless steels)
  • DMK35-IN (premium high-temperature coating for high-temp. alloys, tough stainless steel, Inconel)
Dapra End and Face Mills
For stable, steel and ductile iron applications, Dapra recommends our medium toughness/hardness carbide. Examples of some good applications include: uninterrupted steel cuts; good workholding / machine rigidity; short tool / diameter ratios; lighter depths of cut; good chip evacuation; alloys; low and high carbon steels; ductile (long-chipping) irons; and dry machining.
​
Dapra's mid grade provides high performance and increased tool life over the toughest grade, due to increased hardness of the carbide substrate. This allows higher speed and improved wear resistance, but at a slightly higher risk of insert chipping.


​Available grades include:
  • DMP30 (uncoated substrate – for most steels and ductile irons)
  • DMP30-GLH (high temperatures – general alloy and mold steels)
  • DMP30-HM (high temperatures in tool steels)
  • DMK30 (uncoated substrate – for tough stainless steels, high-temp. alloys, irons)
  • DMK30-GLH (medium to high temperatures)
  • DMK30-HM (high temperatures in tough stainless steels)
Dapra Insert Face Mill End Mill heavy
For very stable, high-wear applications in cast iron and nonferrous materials, as well as hard milling of heat-treated materials, Dapra recommends the use of our hardest grades. Application examples include: gray cast irons; aluminum and copper alloys; plastics; light, smooth cuts in any material; and heat-treated steels (typically over 48 Rc).

Dapra's hardest grades provide optimum wear resistance, with the longest tool life possible. However, insert chipping is a more common occurrence when shock is encountered.

​
Dapra's hardest grades are:
  • DMK25 (uncoated substrate)
  • DMK25-GLH (medium to high temperatures and hardness)
  • DMK25-HM (highest temperatures & hardness – suitable for hardened steels and the best wear resistance in cast iron)
Dapra Copy Milling-

Geometry Selection

Dapra offers three different cutting edges for the Square Shoulder milling line:
  • APET – Strong reinforced cutting edge for optimum wear and chip resistance. This geometry will provide the strongest edge, but at increased spindle load and usually higher decibel levels.
  • XPET – Sharper edge for cutting gummier materials such as low carbon steel, stainless steel and high-temperature alloys. Light hone provides some reinforcement and reduces cutting forces and noise. More susceptible to edge chipping.
  • XPET-ALU – Sharpest edge. Ideal for aluminums and plastics where high-shear cutting is needed. Creates the lowest spindle load and least noise, but most susceptible to edge chipping.

General Recommendations

Material Being Machined
Use stronger, T-land cutting edges for steels and cast irons. Use sharper honed edges for stainless steels and high-temperature alloys. For aluminum and plastics, use sharp, un-honed cutting edges.

Workholding / Machine Tool Rigidity
Use the recommended grades and geometries for rigid setups and machines. In cases where rigidity is lacking (light-duty machine, poor workholding, etc.), use tougher grades and stronger geometries. The exception to this rule is when the use of the sharper geometry (XPET) actually stops or reduces the vibration created by the poor rigidity. These situations typically present a "trial and error” scenario.
​
Material
Geometry Recommendation
Low carbon steels
XPET
Medium carbon, alloy steels
APET
Hardened steels
APET
Stainless steels
XPET
Cast irons
APET
Aluminums
XPET-ALU
Copper alloys
XPET
High-temperature alloys
XPET
Titanium
XPET
Plastics
XPET-ALU
Long Toolholder / Length to Diameter Ratio 
This situation closely resembles the previous rigidity issue. Long tool lengths (including longer tool holders) decrease tool rigidity, creating the potential for chatter and vibration. This can typically be combated with stronger cutting edges, but can also sometimes be corrected with a sharper, free cutting edge. Use the APET unless the results prohibit the use of such a strong edge. The XPET may reduce vibration enough to quiet the operation. Again, use of the toughest grades is typically recommended in long reach applications where chatter or vibration is present.

Coolant vs. Dry Machining
Most applications using Dapra cutting tools are best performed using dry air blast. Exceptions to this rule include: high-temperature alloys, aluminum and some exceptionally tough stainless steels. When dry machining, use the grades and geometries suggested previously. When using coolants, Dapra recommends using the tougher grades, but with sharper cutting edges (XPET). This allows the heat generated in the cutting zone to be minimized, delaying the effects of thermal shock.

Machining Parameters 
For heavier cuts, tougher substrates should be used, due to the increased pressure and potential vibration created. In lighter cuts, the harder grades provide better performance (speed) and longer tool life.

The minimum FPT (feed per tooth) for the APET geometry should be .006". This is to get the chip thickness past the T-land edge preparation, allowing the insert to cut, not rub. The minimum FPT for the XPET insert should be .003". Consequently, lighter cuts (FPT) should not be taken with the APET unless other conditions exist that necessitate the use of the stronger edge.
​
The selection procedure described here will require your careful consideration of several application conditions and insert characteristics. This may take some time, but the cutting results will be well worth your effort.
0 Comments

    Author

    We've compiled the latest news and technical information about our principals and our market that we hope you find informative!

    RSS Feed

    Archives

    May 2025
    April 2025
    March 2025
    February 2025
    January 2025
    December 2024
    November 2024
    October 2024
    September 2024
    August 2024
    July 2024
    June 2024
    May 2024
    April 2024
    March 2024
    February 2024
    January 2024
    December 2023
    November 2023
    October 2023
    September 2023
    August 2023
    July 2023
    June 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    June 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    October 2013
    September 2013
    April 2013
    February 2013
    September 2012
    February 2012
    October 2011
    July 2011
    April 2011
    January 2011
    November 2010
    October 2010
    August 2010
    April 2010
    February 2010
    July 2009
    January 2009
    July 2007

    Categories

    All
    Abrasives
    Advanced Chemical Solutions
    Aerospace
    AirLoc
    Allen Benjamin
    Alpha Tool
    AlumaMill
    Arno Fast Change
    Arno USA
    Asimeto
    Award
    Back Chamfer
    Besly
    Beveling Base Starter Kit
    Bishop Lifting Products
    Boneham
    Boring
    Boring Bars
    Brian Martin
    Browne & Co.
    Carbide Cutting Tools
    Carbide Drills
    CAT40
    CAT50
    Catalog Download
    Chain Hoists
    Chamfer
    Chip Thinning
    Circular Saws
    Clamping
    Coating
    Coolant
    Coronovirus
    Countersinks
    Custom Tooling
    Cutting Tools
    Dapra
    Dapra GRIPP FORCE 5
    Dapra Vapor
    Dapra Volum3
    Deburring
    Deep Hole Drilling
    Drill Bushing
    Drilling
    Drill Points
    Drills
    Dummel
    Dümmel
    End Mill
    Endurance Carbide
    ER Colllet
    ERGO
    Everede
    Everede Tool
    Fantom
    Feeler Gage
    Flap Wheels
    Forged Wheels
    FRB America
    Fullerton Tool
    Fury
    Gage Reconditioning
    Gaylee Saws
    Gemtex
    George Whalley
    Grooving
    GWS Tool Group
    Haimer
    Haimer USA
    Hangsterfer's
    Harmon-i-Cut
    HB Rouse
    HSK
    H Tolerance
    Hydromat
    IBC
    IMTS
    Industrial Supply Assoc
    InovaTool
    Inserts Boring
    Inserts - Boring
    Inserts Grooving
    Inserts - Grooving
    Inserts Milling
    Inserts Parting
    Inserts - Parting
    Inserts- Turning
    Intimidator
    ISA Industrial Supply Assoc
    ISO-9001
    Jergens
    Koenig Expander
    Lexington Cutter
    Live Center
    Llambrich
    Lubricants
    Machining Cloud
    Made In USA
    Manufacturing
    Martindale Saws
    Mastercam
    Material: Aluminum
    Material: Bronze
    Material: Cast Iron
    Material: Chromium
    Material: Copper
    Material High Temp
    Material: Inconel
    Material: Plastics
    Material: Steel
    Material: Titanium
    Measuring Tools
    Memorial Day
    Metals
    Metalworking
    Metalworking Fluid
    Metrology
    Mill Turn
    Minimill
    MRO
    Multifunctional Tool
    Nanotech 7000
    NASA
    NATC
    NC Helix Drill
    Nine9
    North American Tool
    Ohio
    Peel Milling
    PMTS
    Polisher
    Precision Brand
    Promotions
    Punches
    QR Code
    Reamers
    Regal
    Regal Beloit
    Regal Cutting Tools
    Rep Of The Year
    RMT Rocky Mountain Twist
    Roll Form Taps
    Rouse Arno
    Rouse - Arno
    Safeway Sling
    Sales
    Sales Tools
    Saw
    Saw Arbors
    SCM
    Screw Threads
    Scully-Jones
    Shim Stock
    Shrink FIt
    Sling Inspection
    Sling Safety
    Slip Plate
    Sowa
    Spade Drills
    Special Cutting Tools
    Special Tools
    Spot Drill
    S&R Products
    Stonecutter
    Swiss Machining
    Tap: Carbide
    Tap: Carbide Insert
    Tap Chamfer
    Tap Definitions
    Tap: Extension
    Tap: Metric
    Tapping
    Tap: Pulley
    Taps
    Tap: STI
    Tap: Thread Forming
    Technical Support
    Thread Gaging
    Threading
    ThreadMills
    Thread Tap App
    Threadwell
    TIMill
    Tire Mold
    Tool Balancing
    Tool Black
    Toolholders
    Tool Presetter
    Tool Selection
    Tool Wrap
    Trochoidal Milling
    Troubleshooting
    Tuffy Products
    Turning Tools
    Ultramini
    Valspar
    Vexcel Grinding Disc
    Vibration Pads
    Vises
    V-Mac
    Weldon Flat
    Workholding
    YG-1

    RSS Feed

HOME    ABOUT    NEWS    ARCHIVE   CUTTING TOOLS    ACCESSORIES    CONTACT

Browne & Co., Inc.
9605 Tanager Drive
Chardon, Ohio 44024
Phone 440.285.8655
[email protected]
© 2025 Browne & Co., Inc. All Rights Reserved
web design by Rapid Production Marketing
  • Home
  • About
  • Cutting Tools
    • Carbro
    • CFT - George Whalley
    • Dummel
    • Everede Tool
    • Fullerton Tool
    • Inovatool
    • Lexington Cutter
    • Nine 9
    • Regal
    • Rockhard
    • Rocky Mountain Twist
  • Equipment
    • Alpha Tools
    • Boneham
    • FRB America
    • Haimer
    • Hangsterfer's
    • Llambrich
    • MRO Solutions
    • Precision Brand
    • SCM Tapholders
    • Tuffy Products
  • News
  • Contact